
Convolutional Neural Networks
for Particle Tracking

Steve Farrell
for the HEP.TrkX project

May 8, 2017
DS@HEP, FNAL

2

Particle tracking at the LHC

• An interesting and challenging
pattern recognition problem

• A very important piece of event
reconstruction!

Up to 200 interactions per bunch crossing Thousands of charge particle tracks

ATLAS and CMS tracking detectors

• Cylindrical detectors composed of pixel, strip, or TRT
layers to detect passage of charged particles

• Both undergoing evolution for HL-LHC
• O(100M) readout channels!

3

http://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08004

http://atlas.cern/discover/detector/inner-detector

ATLAS CMS

http://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08004
http://atlas.cern/discover/detector/inner-detector

The situation today

• Current tracking algorithms have been used very
successfully in HEP/LHC experiments
• Good efficiency and modeling with acceptable throughput/

latency
• However, they don’t scale so well to HL-LHC conditions

• Thousands of charged particles, O(105) 3D spacepoints,
while algorithms scale worse than quadratic

• Thus, it’s worthwhile to try and think “outside the box”; i.e.,
consider Deep Learning algorithms
• Relatively unexplored area of research
• Might be able to reduce computational cost or at least

increase parallelization
• Might see major improvements

4

Some deep learning inspirations

5

https://arxiv.org/abs/1604.02135

Image segmentation
Online object tracking

Image captioning

https://arxiv.org/abs/1604.03635

https://arxiv.org/abs/1604.02135
https://arxiv.org/abs/1604.03635

Current algorithmic approach (ATLAS, CMS)

• Divide the problem into sequential steps
1. Cluster hits into 3D spacepoints
2. Build triplet “seeds”
3. Build tracks with combinatorial

Kalman Filter
4. Resolve ambiguities and fit tracks

6

Credit: Andy Salzburger

Alternative approaches include Hough transform, Cellular Automaton, RANSAC, etc.

Where to begin?

• What could ML be applied to?
• hit clustering
• seed finding
• single-track hit assignment
• multiple-track “clustering”
• track fitting
• end to end pixels to tracks

• How to represent the inputs, outputs (and
intermediates)?
• discrete vs. continuous space
• hit assignments vs. physics quantities
• engineered vs. learned representations

7

Many options!

Various challenges

• Data sparsity
• Occupancy << 1%
• Except in dense jets…

• Data irregularity
• Complex geometry
• Detector inefficiencies, material effects

• Defining good cost functions
• Particularly for multi-track models
• How to quantify reco efficiency in a differentiable way?

• Experimental constraints on performance, interpretability
• A big deal, for obvious reasons

• Time and space complexity constraints
• Otherwise, what’s the point?

8

CMS “tilted” proposal for HL-LHC

Detector images

• Neutrino experiments may have nice “image” detectors, but it’s a bit
harder with LHC detectors!

• Maybe we can unroll + flatten the barrel layers
• …but size increases with each detector layer

• Raw data is extremely high dimensional
(O(108) channels!)
• Maybe we can coarsen it

(like AM methods)
• Smart down-sampling needed

• CV techniques are good at this
9

Nova CMS “tilted” proposal

Convolutional networks as track finders

• Convolutional filters can be thought of as track pattern matchers
• Early layers look for track stubs
• Later layers connect stubs together to build tracks
• Learned representations are in reality optimized for the data => may be abstract

and more compact than brute force pattern bank
• The learned features can be used in a variety of ways

• Extract out track parameters
• Project back to detector image and classify hits

10

ç

Input track image Stub features Segment features

Stub filters

Higher level
features

etc.

Convolutions and pooling

?

What can CNNs learn about tracks?

• Convolutional auto-encoder: can it learn a smaller-dimensional
representation that allows it to fully reconstruct its inputs?
• Decently well

• De-noising: can it clean out noise hits?
• Seems so

11
https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

What can CNNs learn about tracks?

• Track parameter estimation: can it predict the tracks’ parameters?
• Some inspiration from Hough Transform: binned parameter space with

peaks at the correct values
• By converting regression problem into discrete classification problem, can

handle variable number of tracks with relatively simple CNN architecture

• Might be an interesting approach, but it has limitations
• doesn’t map params onto the hits like Hough
• precision comes at cost of dimensionality 12

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

Ongoing HEP.TrkX studies

• About the project
• https://heptrkx.github.io/
• Pilot project funded by DOE ASCR and COMP HEP
• Part of HEP CCE
• People:

• Exploratory work on toy datasets
• Hit classification for seeded tracks with LSTMs and CNNs
• End-to-end track parameter estimation with CNN + LSTM
• and some others

13

LBL: Me, Mayur Mudigonda, Prabhat, Paolo
Caltech: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng
FNAL: Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris

https://heptrkx.github.io/

Hit classification with LSTMs in 2D

• Seeded track inputs, pixel score
outputs per detector layer

• Works decently well
• Can be extended to multiple

input seeds and output channels

14

3210

LSTM LSTM LSTM LSTM

FC FC FC FC

Input detector layer
arrays

Target track

Output detector layer
predictions

Target track
3210

Track in 20% noise

Multi-track background

Variable-sized
detector layers

softmax activations

https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D.ipynb
https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D_varlayer.ipynb

https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D.ipynb
https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D_varlayer.ipynb

Hit classification with CNNs in 2D

• CNNs can also extrapolate
and find tracks

• Extrapolation reach may be
limited without
downsampling

• Autoencoder architecture
allows to extrapolate farther

15

Trained with 10 conv layers, no down-sampling

9-layer convolutional “autoencoder"

https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/cnn_toy2D.ipynb

https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/cnn_toy2D.ipynb

Hit classification with CNNs in 3D

• Basic CNN model with 10 layers and 3x3x3 filters
• Gives nice clean, precise predictions

16

Projected input

Projected output

3 avg bkg tracks, 1% noise

Architecture comparisons

• Both LSTMs and CNNs do well at classifying hits for reasonable
occupancy

• Models’ performance degrades with increasing track multiplicity
• CNNs seem to scale well to high track multiplicity

17

Uses best pixel Uses best hit pixel

Track parameter estimation

18

• Use a basic CNN with downsampling
and regression head to estimate a
track’s parameters
• could be an auxiliary target to guide

training, or potentially useful as the
final output of tracking!

• Identifying straight line params in heavy
noise:

[Work of Dustin Anderson]

Extending to variable number of tracks

• Attach an LSTM to a CNN to emit parameters for a variable number of tracks!
• The LSTM generates the sequence of parameters
• Requires an ordering the model can learn
• Should provide some kind of stopping criteria

19

[Work of Dustin Anderson]

Estimating uncertainties on parameters

• Train the model to also estimate the uncertainties by adding additional targets:

• Train using a log gaussian likelihood loss:

• and voila!

20

[Work of Dustin Anderson]

Visualizing CNN features

• We can visualize what the CNN is learning by finding images which maximize
a particular filter’s activation

• Here are the 2nd layer filters of the CNN+LSTM track parameter model

21

[Work of Dustin Anderson]

Conclusion

• There is some hope that deep learning techniques could be useful for particle
tracking
• Powerful non-linear modeling capabilities
• Learned representations > engineered features
• Easy parallelization

• It’s not yet known if computer vision techniques like CNNs offer the most
promise, but they have some nice features
• They can learn useful things about the data and seem versatile
• Some successes seen with highly simple toy datasets

• Where do we go from here?
• Try to apply these ideas to realistically complex data
• Continue thinking up new approaches

22

Backup

23

3D toy detector data

• Starting to get a little more “realistic”
• 10 detector planes, 32x32 pixels each
• Number of background tracks sampled from Poisson
• With/without random noise hits

• Adapting my existing models to this data is mostly straightforward
• Flatten each plane for the LSTM models
• Use 3D convolution

24

What can CNNs learn about tracks?

• Track counting: can it predict how many tracks are in an event?
• can be framed as a regression problem, but here I framed it as a
classification problem

• seemingly not a very difficult task for a deep NN

25
https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

Next-layer LSTM prediction

• Next-layer model gives predictions that are less precise but smoother and more accurate
• Mostly unaffected by nearby stray hits

• With this detector occupancy, they are the best at classifying hits
• but this may change with higher occupancy

26

Projected input

Projected output

3 avg bkg tracks, 1% noise

The HEP.TrkX project

• A 1-year pilot project to develop ML algorithms for HEP tracking
• Funded by DOE ASCR and COMP HEP, part of HEP CCE
• Collaboration between ATLAS, CMS, LAr folks from LBL, Caltech, and FNAL

• Some goals
• Explore the broad space of ideas on simplified tracking problems
• Develop a toolkit of promising ideas

• ideas that work (physics constraints)
• ideas that scale (computing constraints)

• The work is in an exploratory phase
• Testing ideas in a breadth-first fashion
• Very much a work-in-progress

27

LBL: Me, Mayur Mudigonda, Prabhat, Paolo
Caltech: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng
FNAL: Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris

Other ideas - data transforms

• Hough Transform breaks down in LHC-like data due to process noise
and high occupancy

• But what if a deep network could learn a mapping to group together
hits that belong to the same track?
• You don’t need to impose a specific representation
• The model could take event context into account

28

Other ideas - graph convolutions

• Graph convolutions operate on graph-structured data, taking into account
distance metrics
• https://tkipf.github.io/graph-convolutional-networks/

• Connections between ~plausible hits on detector layers can form the graph
• Handles sparsity naturally
• Scales naturally with occupancy

• I haven’t dedicated much thought to this yet, but it may be versatile enough to
do the kinds of things I’ve already demonstrated

29

https://tkipf.github.io/graph-convolutional-networks/

ATLAS tracking in dense environments

30
Stolen from Ben Nachman’s TPM presentation:
https://indico.physics.lbl.gov/indico/event/433/

https://indico.physics.lbl.gov/indico/event/433/

Model architectures - ConvNN

31

__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) (None, 10, 32, 32) 0
__
reshape_1 (Reshape) (None, 1, 10, 32, 32) 0 input_1[0][0]
__
convolution3d_1 (Convolution3D) (None, 8, 10, 32, 32) 224 reshape_1[0][0]
__
convolution3d_2 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_1[0][0]
__
convolution3d_3 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_2[0][0]
__
convolution3d_4 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_3[0][0]
__
convolution3d_5 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_4[0][0]
__
convolution3d_6 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_5[0][0]
__
convolution3d_7 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_6[0][0]
__
convolution3d_8 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_7[0][0]
__
convolution3d_9 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_8[0][0]
__
convolution3d_10 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_9[0][0]
__
convolution3d_11 (Convolution3D) (None, 1, 10, 32, 32) 217 convolution3d_10[0][0]
__
reshape_2 (Reshape) (None, 10, 1024) 0 convolution3d_11[0][0]
__
timedistributed_1 (TimeDistribute(None, 10, 1024) 0 reshape_2[0][0]
==
Total params: 16065
__

Model architectures - Conv autoencoder

32

__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) (None, 10, 32, 32) 0
__
reshape_1 (Reshape) (None, 1, 10, 32, 32) 0 input_1[0][0]
__
convolution3d_1 (Convolution3D) (None, 8, 10, 32, 32) 224 reshape_1[0][0]
__
convolution3d_2 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_1[0][0]
__
maxpooling3d_1 (MaxPooling3D) (None, 8, 10, 16, 16) 0 convolution3d_2[0][0]
__
dropout_1 (Dropout) (None, 8, 10, 16, 16) 0 maxpooling3d_1[0][0]
__
convolution3d_3 (Convolution3D) (None, 16, 10, 16, 16)3472 dropout_1[0][0]
__
convolution3d_4 (Convolution3D) (None, 16, 10, 16, 16)6928 convolution3d_3[0][0]
__
maxpooling3d_2 (MaxPooling3D) (None, 16, 10, 8, 8) 0 convolution3d_4[0][0]
__
dropout_2 (Dropout) (None, 16, 10, 8, 8) 0 maxpooling3d_2[0][0]
__
convolution3d_5 (Convolution3D) (None, 32, 10, 8, 8) 13856 dropout_2[0][0]
__
maxpooling3d_3 (MaxPooling3D) (None, 32, 10, 4, 4) 0 convolution3d_5[0][0]
__
dropout_3 (Dropout) (None, 32, 10, 4, 4) 0 maxpooling3d_3[0][0]
__
convolution3d_6 (Convolution3D) (None, 64, 10, 4, 4) 55360 dropout_3[0][0]
__
maxpooling3d_4 (MaxPooling3D) (None, 64, 10, 2, 2) 0 convolution3d_6[0][0]
__
dropout_4 (Dropout) (None, 64, 10, 2, 2) 0 maxpooling3d_4[0][0]
__
convolution3d_7 (Convolution3D) (None, 96, 10, 2, 2) 73824 dropout_4[0][0]
__
maxpooling3d_5 (MaxPooling3D) (None, 96, 10, 1, 1) 0 convolution3d_7[0][0]
__
dropout_5 (Dropout) (None, 96, 10, 1, 1) 0 maxpooling3d_5[0][0]
__
convolution3d_8 (Convolution3D) (None, 128, 10, 1, 1) 36992 dropout_5[0][0]
__
permute_1 (Permute) (None, 10, 128, 1, 1) 0 convolution3d_8[0][0]
__
reshape_2 (Reshape) (None, 10, 128) 0 permute_1[0][0]
__
timedistributed_1 (TimeDistribute(None, 10, 1024) 132096 reshape_2[0][0]
==
Total params: 324488
__

Model architectures - LSTM

33

__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) (None, 9, 1024) 0
__
lstm_1 (LSTM) (None, 9, 1024) 8392704 input_1[0][0]
__
timedistributed_1 (TimeDistribute(None, 9, 1024) 1049600 lstm_1[0][0]
==
Total params: 9442304
__

